MSc Exam Asymptotic Statistics

Date: Friday November 4, 2016

(pnt+8/7.8

Time: 9.00-12.00 hours Place: LB 5173.0055

Progress code: WBMA14003

Rules of the exam:

- It is allowed to use the enumeration of theorems as well as a simple calculator e.g. CASIO FX-82 or TI30.
- Provide each page with your name and student number.
- The number of points per question are indicated by a box.
- We wish you a lot of success with the completion of the exam!
- 1. Suppose that H_1, H_2, \cdots is a sequence of independent Bernoulli random variables with $P(H_n = 1) = 1/n$. Let $X_n = (-1)^n n H_n$, for $n = 1, 2, \cdots$.
 - (a) $\boxed{7}$ Show that X_n tends to zero in probability.
 - (b) 8 Show that X_n does not tend to zero almost surely. Hint: Consider $\lim_{n\to\infty}^{\lim\sup} X_n$ and $\lim_{n\to\infty}^{\lim\inf} X_n$.
- 2. Let X, X_1, X_2, \dots , be i.i.d. with probability mass function,

$$P(X = j) = P(X = -j) = \frac{c}{j^2 \log j}$$
, for, $j = 3, 4, \dots$; $c = 2 \sum_{j=3}^{\infty} \frac{1}{j^2 \log j}$,

where c is the normalizing constant. In the question you will show that $\bar{X}_n \stackrel{P}{\to} 0$. This gives an example of a distribution that obeys the weak law of large numbers even though E(X) does not exist. Note that Theorem 4(c) implies that \bar{X}_n does not converge a.s. to 0. Show that $\bar{X}_n \stackrel{P}{\to} 0$ in the following three steps.

- (a) [5] Let $Y_{n,k} = X_k I(|X_k| \le n)$ for $k = 1, \dots, n$. Show that $\bar{Y}_n \stackrel{q.m.}{\to} 0$ so that $\bar{Y}_n \stackrel{P}{\to} 0$.
- (b) $\boxed{5}$ Show that $P(\bar{X}_n \neq \bar{Y}_n) \leq \sum_{k=1}^n P(X_k \neq Y_{n,k}) \to 0$, as $n \to \infty$.
- (c) $\boxed{5}$ Use (a) and (b) to conclude $\bar{X}_n \stackrel{P}{\to} 0$.

- 3. Assume for a triangular array of independent variables that the X_{nj} are uniformly bounded, say $|X_{n,j}| < A$ for all n and j and some fixed constant A. Let $S_n = \sum_{j=1}^n X_{nj}$.
 - (a) 10 Suppose that $Var(S_n) \to \infty$, as $n \to \infty$. Show that

$$\frac{S_n - E(S_n)}{\sqrt{\operatorname{Var}(S_n)}} \stackrel{D}{\to} N(0,1).$$

(b) 10 Apply this to the binomial random variable, $Y_n \in \mathcal{B}(n, p_n)$, (which is a sum of independent Bernoulli random variables) in the case $p_n = 1/\sqrt{n}$ to show that

$$\sqrt[4]{n}\left(\frac{Y_n}{\sqrt{n}}-1\right) \stackrel{D}{\to} N(0,1).$$

- 4. (Sequential Information Inequality.) Let X_1, X_2, \cdots be a sequence of i.i.d. random variables whose density, $f(x|\theta)$, exists and satisfies the conditions of Theorem 19. Let N be a stopping time (i.e. N is a random variable taking positive integer values such that for all n, the event $\{N=n\}$ depends only on the variables X_1, \cdots, X_n . Let $\{\hat{\theta}_n(X_1, \cdots, X_n)\}_{n=1}^{\infty}$ be a sequence of estimates of θ with finite expectations and consider the estimate $\sum_{n=1}^{\infty} \hat{\theta}_n(X_1, \cdots, X_n)I\{N=n\} = \hat{\theta}_N$. Let $g(\theta) = E_{\theta}\hat{\theta}_N$.
 - (a) 15 Show that

$$\operatorname{Var}_{\theta}(\hat{\theta}_N) \ge \frac{g'(\theta)^2}{\mathcal{F}(\theta)E_{\theta}N}.$$

Note: You may use the Wald equations: If Y_1, Y_2, \cdots are i.i.d. with finite mean, μ , and if N is a stopping time depending on the Ys such that $EN < \infty$, then

$$E(Y_1 + \cdots + Y_N) = \mu E(N).$$

If in addition $\mu = 0$ and the variance is finite, then

$$E(Y_1 + \dots + Y_N)^2 = \operatorname{Var}(Y_1)E(N).$$

$$E[X_{i}T(|X_{i}| \leq j)] = \sum_{\substack{j=-n \ (j) \geq 3}}^{n} j P(X_{i}=j) = o(j)b_{i} P(X_{i}=j) = P(X_{i}=-j)$$

$$E[X_{n}^{2}] = E[X_{n}^{2} \pm (X_{n} \leq n)]$$

$$= \sum_{j=3}^{n} 2 \cdot j^2 P(X_{N}=j) = 2 \cdot \sum_{j=3}^{n} \frac{1}{\log j} < 0 \quad \forall N=3$$

Tu(b)
$$\frac{1}{h} \sum_{k=1}^{n} \gamma_{n_{j}} u_{j} = \sum_{k=1}^{n} \frac{a_{j}m}{h} = \sum_{k=1}^{n} \gamma_{n_{j}} u_{j} = 0$$
 by (4)

(b)
$$P(X_n \neq Y_n) = P(\sum_{n=1}^n X_n \neq \sum_{n=1}^n Y_{n,n})$$

$$\leq P(\bigcup_{n=1}^{\infty} X_n \neq Y_{n,u}) = \underset{n=1}{\overset{*}{\succeq}} P(X_u \neq Y_{n,u})$$

$$= n P(X_u + Y_{n,u}) = n P(|X_u| > n)$$

$$= n \underset{J=n+1}{\overset{\infty}{\succeq}} P(1X_{ij} = j)$$

$$< \varepsilon \text{ if } \sum_{j=n+1}^{\infty} \frac{2c}{j^2 \log j} < \frac{\varepsilon}{h}$$

$$\begin{array}{c} MS_{c} \\ S_{n}^{2} = Var[S_{n}] = \frac{2}{3^{2}} Var[X_{n}] \\ > a \quad b_{1} \leq upposition. \\ MS_{n} \leq upposition.$$

$$||\mathbf{M}|| \leq \frac{1}{2} |\log f(x_1, x_1, x_2, x_3)| = \frac{1}{2} \frac{f(x_1, x_2, x_3)}{f(x_1, x_2, x_3)} = \frac{1}{2} \frac{1}{2} \frac{f(x_1, x_2, x_3)}{f(x_1, x_2, x_3)} = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{f(x_1, x_2, x_3)}{f(x_1, x_2, x_3)} = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{f(x_1, x_2, x_3)}{f(x_1, x_2, x_3)} = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{f(x_1, x_2, x_3)}{f(x_1, x_2, x_3)} = \frac{1}{$$